LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Classes Files Functions Variables Typedefs Macros
lapacke_zuncsd.c File Reference
#include "lapacke_utils.h"
Include dependency graph for lapacke_zuncsd.c:

Go to the source code of this file.

Functions/Subroutines

lapack_int LAPACKE_zuncsd (int matrix_order, char jobu1, char jobu2, char jobv1t, char jobv2t, char trans, char signs, lapack_int m, lapack_int p, lapack_int q, lapack_complex_double *x11, lapack_int ldx11, lapack_complex_double *x12, lapack_int ldx12, lapack_complex_double *x21, lapack_int ldx21, lapack_complex_double *x22, lapack_int ldx22, double *theta, lapack_complex_double *u1, lapack_int ldu1, lapack_complex_double *u2, lapack_int ldu2, lapack_complex_double *v1t, lapack_int ldv1t, lapack_complex_double *v2t, lapack_int ldv2t)

Function/Subroutine Documentation

lapack_int LAPACKE_zuncsd ( int  matrix_order,
char  jobu1,
char  jobu2,
char  jobv1t,
char  jobv2t,
char  trans,
char  signs,
lapack_int  m,
lapack_int  p,
lapack_int  q,
lapack_complex_double x11,
lapack_int  ldx11,
lapack_complex_double x12,
lapack_int  ldx12,
lapack_complex_double x21,
lapack_int  ldx21,
lapack_complex_double x22,
lapack_int  ldx22,
double *  theta,
lapack_complex_double u1,
lapack_int  ldu1,
lapack_complex_double u2,
lapack_int  ldu2,
lapack_complex_double v1t,
lapack_int  ldv1t,
lapack_complex_double v2t,
lapack_int  ldv2t 
)

Definition at line 36 of file lapacke_zuncsd.c.

{
lapack_int info = 0;
lapack_int lrwork = -1;
lapack_int lwork = -1;
lapack_int* iwork = NULL;
double* rwork = NULL;
lapack_complex_double* work = NULL;
double rwork_query;
lapack_int nrows_x11, nrows_x12, nrows_x21, nrows_x22;
if( matrix_order != LAPACK_COL_MAJOR && matrix_order != LAPACK_ROW_MAJOR ) {
LAPACKE_xerbla( "LAPACKE_zuncsd", -1 );
return -1;
}
#ifndef LAPACK_DISABLE_NAN_CHECK
/* Optionally check input matrices for NaNs */
nrows_x11 = ( LAPACKE_lsame( trans, 'n' ) ? p : q);
nrows_x12 = ( LAPACKE_lsame( trans, 'n' ) ? p : m-q);
nrows_x21 = ( LAPACKE_lsame( trans, 'n' ) ? m-p : q);
nrows_x22 = ( LAPACKE_lsame( trans, 'n' ) ? m-p : m-q);
if( LAPACKE_zge_nancheck( matrix_order, nrows_x11, q, x11, ldx11 ) ) {
return -11;
}
if( LAPACKE_zge_nancheck( matrix_order, nrows_x12, m-q, x12, ldx12 ) ) {
return -13;
}
if( LAPACKE_zge_nancheck( matrix_order, nrows_x21, q, x21, ldx21 ) ) {
return -15;
}
if( LAPACKE_zge_nancheck( matrix_order, nrows_x22, m-q, x22, ldx22 ) ) {
return -17;
}
#endif
/* Allocate memory for working array(s) */
iwork = (lapack_int*)LAPACKE_malloc( sizeof(lapack_int) * MAX(1,m-q) );
if( iwork == NULL ) {
goto exit_level_0;
}
/* Query optimal working array(s) size */
info = LAPACKE_zuncsd_work( matrix_order, jobu1, jobu2, jobv1t, jobv2t,
trans, signs, m, p, q, x11, ldx11, x12, ldx12,
x21, ldx21, x22, ldx22, theta, u1, ldu1, u2,
ldu2, v1t, ldv1t, v2t, ldv2t, &work_query,
lwork, &rwork_query, lrwork, iwork );
if( info != 0 ) {
goto exit_level_1;
}
lrwork = (lapack_int)rwork_query;
lwork = LAPACK_Z2INT( work_query );
/* Allocate memory for work arrays */
rwork = (double*)LAPACKE_malloc( sizeof(double) * lrwork );
if( rwork == NULL ) {
goto exit_level_1;
}
if( work == NULL ) {
goto exit_level_2;
}
/* Call middle-level interface */
info = LAPACKE_zuncsd_work( matrix_order, jobu1, jobu2, jobv1t, jobv2t,
trans, signs, m, p, q, x11, ldx11, x12, ldx12,
x21, ldx21, x22, ldx22, theta, u1, ldu1, u2,
ldu2, v1t, ldv1t, v2t, ldv2t, work, lwork,
rwork, lrwork, iwork );
/* Release memory and exit */
LAPACKE_free( work );
exit_level_2:
LAPACKE_free( rwork );
exit_level_1:
LAPACKE_free( iwork );
exit_level_0:
if( info == LAPACK_WORK_MEMORY_ERROR ) {
LAPACKE_xerbla( "LAPACKE_zuncsd", info );
}
return info;
}

Here is the call graph for this function: