LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Classes Files Functions Variables Typedefs Macros
lapacke_dppsvx_work.c File Reference
#include "lapacke_utils.h"
Include dependency graph for lapacke_dppsvx_work.c:

Go to the source code of this file.

Functions/Subroutines

lapack_int LAPACKE_dppsvx_work (int matrix_order, char fact, char uplo, lapack_int n, lapack_int nrhs, double *ap, double *afp, char *equed, double *s, double *b, lapack_int ldb, double *x, lapack_int ldx, double *rcond, double *ferr, double *berr, double *work, lapack_int *iwork)

Function/Subroutine Documentation

lapack_int LAPACKE_dppsvx_work ( int  matrix_order,
char  fact,
char  uplo,
lapack_int  n,
lapack_int  nrhs,
double *  ap,
double *  afp,
char *  equed,
double *  s,
double *  b,
lapack_int  ldb,
double *  x,
lapack_int  ldx,
double *  rcond,
double *  ferr,
double *  berr,
double *  work,
lapack_int iwork 
)

Definition at line 36 of file lapacke_dppsvx_work.c.

{
lapack_int info = 0;
if( matrix_order == LAPACK_COL_MAJOR ) {
/* Call LAPACK function and adjust info */
LAPACK_dppsvx( &fact, &uplo, &n, &nrhs, ap, afp, equed, s, b, &ldb, x,
&ldx, rcond, ferr, berr, work, iwork, &info );
if( info < 0 ) {
info = info - 1;
}
} else if( matrix_order == LAPACK_ROW_MAJOR ) {
lapack_int ldb_t = MAX(1,n);
lapack_int ldx_t = MAX(1,n);
double* b_t = NULL;
double* x_t = NULL;
double* ap_t = NULL;
double* afp_t = NULL;
/* Check leading dimension(s) */
if( ldb < nrhs ) {
info = -11;
LAPACKE_xerbla( "LAPACKE_dppsvx_work", info );
return info;
}
if( ldx < nrhs ) {
info = -13;
LAPACKE_xerbla( "LAPACKE_dppsvx_work", info );
return info;
}
/* Allocate memory for temporary array(s) */
b_t = (double*)LAPACKE_malloc( sizeof(double) * ldb_t * MAX(1,nrhs) );
if( b_t == NULL ) {
goto exit_level_0;
}
x_t = (double*)LAPACKE_malloc( sizeof(double) * ldx_t * MAX(1,nrhs) );
if( x_t == NULL ) {
goto exit_level_1;
}
ap_t = (double*)
LAPACKE_malloc( sizeof(double) * ( MAX(1,n) * MAX(2,n+1) ) / 2 );
if( ap_t == NULL ) {
goto exit_level_2;
}
afp_t = (double*)
LAPACKE_malloc( sizeof(double) * ( MAX(1,n) * MAX(2,n+1) ) / 2 );
if( afp_t == NULL ) {
goto exit_level_3;
}
/* Transpose input matrices */
LAPACKE_dge_trans( matrix_order, n, nrhs, b, ldb, b_t, ldb_t );
LAPACKE_dpp_trans( matrix_order, uplo, n, ap, ap_t );
if( LAPACKE_lsame( fact, 'f' ) ) {
LAPACKE_dpp_trans( matrix_order, uplo, n, afp, afp_t );
}
/* Call LAPACK function and adjust info */
LAPACK_dppsvx( &fact, &uplo, &n, &nrhs, ap_t, afp_t, equed, s, b_t,
&ldb_t, x_t, &ldx_t, rcond, ferr, berr, work, iwork,
&info );
if( info < 0 ) {
info = info - 1;
}
/* Transpose output matrices */
LAPACKE_dge_trans( LAPACK_COL_MAJOR, n, nrhs, b_t, ldb_t, b, ldb );
LAPACKE_dge_trans( LAPACK_COL_MAJOR, n, nrhs, x_t, ldx_t, x, ldx );
if( LAPACKE_lsame( fact, 'e' ) && LAPACKE_lsame( *equed, 'y' ) ) {
LAPACKE_dpp_trans( LAPACK_COL_MAJOR, uplo, n, ap_t, ap );
}
if( LAPACKE_lsame( fact, 'e' ) || LAPACKE_lsame( fact, 'n' ) ) {
LAPACKE_dpp_trans( LAPACK_COL_MAJOR, uplo, n, afp_t, afp );
}
/* Release memory and exit */
LAPACKE_free( afp_t );
exit_level_3:
LAPACKE_free( ap_t );
exit_level_2:
LAPACKE_free( x_t );
exit_level_1:
LAPACKE_free( b_t );
exit_level_0:
LAPACKE_xerbla( "LAPACKE_dppsvx_work", info );
}
} else {
info = -1;
LAPACKE_xerbla( "LAPACKE_dppsvx_work", info );
}
return info;
}

Here is the call graph for this function:

Here is the caller graph for this function: