LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Classes Files Functions Variables Typedefs Macros
lapacke_zhbgvx_work.c File Reference
#include "lapacke_utils.h"
Include dependency graph for lapacke_zhbgvx_work.c:

Go to the source code of this file.

Functions/Subroutines

lapack_int LAPACKE_zhbgvx_work (int matrix_order, char jobz, char range, char uplo, lapack_int n, lapack_int ka, lapack_int kb, lapack_complex_double *ab, lapack_int ldab, lapack_complex_double *bb, lapack_int ldbb, lapack_complex_double *q, lapack_int ldq, double vl, double vu, lapack_int il, lapack_int iu, double abstol, lapack_int *m, double *w, lapack_complex_double *z, lapack_int ldz, lapack_complex_double *work, double *rwork, lapack_int *iwork, lapack_int *ifail)

Function/Subroutine Documentation

lapack_int LAPACKE_zhbgvx_work ( int  matrix_order,
char  jobz,
char  range,
char  uplo,
lapack_int  n,
lapack_int  ka,
lapack_int  kb,
lapack_complex_double ab,
lapack_int  ldab,
lapack_complex_double bb,
lapack_int  ldbb,
lapack_complex_double q,
lapack_int  ldq,
double  vl,
double  vu,
lapack_int  il,
lapack_int  iu,
double  abstol,
lapack_int m,
double *  w,
lapack_complex_double z,
lapack_int  ldz,
lapack_complex_double work,
double *  rwork,
lapack_int iwork,
lapack_int ifail 
)

Definition at line 36 of file lapacke_zhbgvx_work.c.

{
lapack_int info = 0;
if( matrix_order == LAPACK_COL_MAJOR ) {
/* Call LAPACK function and adjust info */
LAPACK_zhbgvx( &jobz, &range, &uplo, &n, &ka, &kb, ab, &ldab, bb, &ldbb,
q, &ldq, &vl, &vu, &il, &iu, &abstol, m, w, z, &ldz,
work, rwork, iwork, ifail, &info );
if( info < 0 ) {
info = info - 1;
}
} else if( matrix_order == LAPACK_ROW_MAJOR ) {
lapack_int ldab_t = MAX(1,ka+1);
lapack_int ldbb_t = MAX(1,kb+1);
lapack_int ldq_t = MAX(1,n);
lapack_int ldz_t = MAX(1,n);
lapack_complex_double* ab_t = NULL;
lapack_complex_double* bb_t = NULL;
lapack_complex_double* q_t = NULL;
lapack_complex_double* z_t = NULL;
/* Check leading dimension(s) */
if( ldab < n ) {
info = -9;
LAPACKE_xerbla( "LAPACKE_zhbgvx_work", info );
return info;
}
if( ldbb < n ) {
info = -11;
LAPACKE_xerbla( "LAPACKE_zhbgvx_work", info );
return info;
}
if( ldq < n ) {
info = -13;
LAPACKE_xerbla( "LAPACKE_zhbgvx_work", info );
return info;
}
if( ldz < n ) {
info = -22;
LAPACKE_xerbla( "LAPACKE_zhbgvx_work", info );
return info;
}
/* Allocate memory for temporary array(s) */
LAPACKE_malloc( sizeof(lapack_complex_double) * ldab_t * MAX(1,n) );
if( ab_t == NULL ) {
goto exit_level_0;
}
LAPACKE_malloc( sizeof(lapack_complex_double) * ldbb_t * MAX(1,n) );
if( bb_t == NULL ) {
goto exit_level_1;
}
if( LAPACKE_lsame( jobz, 'v' ) ) {
ldq_t * MAX(1,n) );
if( q_t == NULL ) {
goto exit_level_2;
}
}
if( LAPACKE_lsame( jobz, 'v' ) ) {
ldz_t * MAX(1,n) );
if( z_t == NULL ) {
goto exit_level_3;
}
}
/* Transpose input matrices */
LAPACKE_zhb_trans( matrix_order, uplo, n, ka, ab, ldab, ab_t, ldab_t );
LAPACKE_zhb_trans( matrix_order, uplo, n, kb, bb, ldbb, bb_t, ldbb_t );
/* Call LAPACK function and adjust info */
LAPACK_zhbgvx( &jobz, &range, &uplo, &n, &ka, &kb, ab_t, &ldab_t, bb_t,
&ldbb_t, q_t, &ldq_t, &vl, &vu, &il, &iu, &abstol, m, w,
z_t, &ldz_t, work, rwork, iwork, ifail, &info );
if( info < 0 ) {
info = info - 1;
}
/* Transpose output matrices */
LAPACKE_zhb_trans( LAPACK_COL_MAJOR, uplo, n, ka, ab_t, ldab_t, ab,
ldab );
LAPACKE_zhb_trans( LAPACK_COL_MAJOR, uplo, n, kb, bb_t, ldbb_t, bb,
ldbb );
if( LAPACKE_lsame( jobz, 'v' ) ) {
LAPACKE_zge_trans( LAPACK_COL_MAJOR, n, n, q_t, ldq_t, q, ldq );
}
if( LAPACKE_lsame( jobz, 'v' ) ) {
LAPACKE_zge_trans( LAPACK_COL_MAJOR, n, n, z_t, ldz_t, z, ldz );
}
/* Release memory and exit */
if( LAPACKE_lsame( jobz, 'v' ) ) {
LAPACKE_free( z_t );
}
exit_level_3:
if( LAPACKE_lsame( jobz, 'v' ) ) {
LAPACKE_free( q_t );
}
exit_level_2:
LAPACKE_free( bb_t );
exit_level_1:
LAPACKE_free( ab_t );
exit_level_0:
LAPACKE_xerbla( "LAPACKE_zhbgvx_work", info );
}
} else {
info = -1;
LAPACKE_xerbla( "LAPACKE_zhbgvx_work", info );
}
return info;
}

Here is the call graph for this function:

Here is the caller graph for this function: