LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Classes Files Functions Variables Typedefs Macros
crqt01.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine crqt01 (M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK, RWORK, RESULT)
 CRQT01

Function/Subroutine Documentation

subroutine crqt01 ( integer  M,
integer  N,
complex, dimension( lda, * )  A,
complex, dimension( lda, * )  AF,
complex, dimension( lda, * )  Q,
complex, dimension( lda, * )  R,
integer  LDA,
complex, dimension( * )  TAU,
complex, dimension( lwork )  WORK,
integer  LWORK,
real, dimension( * )  RWORK,
real, dimension( * )  RESULT 
)

CRQT01

Purpose:
 CRQT01 tests CGERQF, which computes the RQ factorization of an m-by-n
 matrix A, and partially tests CUNGRQ which forms the n-by-n
 orthogonal matrix Q.

 CRQT01 compares R with A*Q', and checks that Q is orthogonal.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in]A
          A is COMPLEX array, dimension (LDA,N)
          The m-by-n matrix A.
[out]AF
          AF is COMPLEX array, dimension (LDA,N)
          Details of the RQ factorization of A, as returned by CGERQF.
          See CGERQF for further details.
[out]Q
          Q is COMPLEX array, dimension (LDA,N)
          The n-by-n orthogonal matrix Q.
[out]R
          R is COMPLEX array, dimension (LDA,max(M,N))
[in]LDA
          LDA is INTEGER
          The leading dimension of the arrays A, AF, Q and L.
          LDA >= max(M,N).
[out]TAU
          TAU is COMPLEX array, dimension (min(M,N))
          The scalar factors of the elementary reflectors, as returned
          by CGERQF.
[out]WORK
          WORK is COMPLEX array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
[out]RWORK
          RWORK is REAL array, dimension (max(M,N))
[out]RESULT
          RESULT is REAL array, dimension (2)
          The test ratios:
          RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS )
          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011

Definition at line 126 of file crqt01.f.

Here is the call graph for this function:

Here is the caller graph for this function: