LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Classes Files Functions Variables Typedefs Macros
lapacke_dgejsv_work.c File Reference
#include "lapacke_utils.h"
Include dependency graph for lapacke_dgejsv_work.c:

Go to the source code of this file.

Functions/Subroutines

lapack_int LAPACKE_dgejsv_work (int matrix_order, char joba, char jobu, char jobv, char jobr, char jobt, char jobp, lapack_int m, lapack_int n, double *a, lapack_int lda, double *sva, double *u, lapack_int ldu, double *v, lapack_int ldv, double *work, lapack_int lwork, lapack_int *iwork)

Function/Subroutine Documentation

lapack_int LAPACKE_dgejsv_work ( int  matrix_order,
char  joba,
char  jobu,
char  jobv,
char  jobr,
char  jobt,
char  jobp,
lapack_int  m,
lapack_int  n,
double *  a,
lapack_int  lda,
double *  sva,
double *  u,
lapack_int  ldu,
double *  v,
lapack_int  ldv,
double *  work,
lapack_int  lwork,
lapack_int iwork 
)

Definition at line 36 of file lapacke_dgejsv_work.c.

{
lapack_int info = 0;
if( matrix_order == LAPACK_COL_MAJOR ) {
/* Call LAPACK function and adjust info */
LAPACK_dgejsv( &joba, &jobu, &jobv, &jobr, &jobt, &jobp, &m, &n, a,
&lda, sva, u, &ldu, v, &ldv, work, &lwork, iwork,
&info );
if( info < 0 ) {
info = info - 1;
}
} else if( matrix_order == LAPACK_ROW_MAJOR ) {
lapack_int nu = LAPACKE_lsame( jobu, 'n' ) ? 1 : m;
lapack_int nv = LAPACKE_lsame( jobv, 'n' ) ? 1 : n;
lapack_int lda_t = MAX(1,m);
lapack_int ldu_t = MAX(1,nu);
lapack_int ldv_t = MAX(1,nv);
double* a_t = NULL;
double* u_t = NULL;
double* v_t = NULL;
/* Check leading dimension(s) */
if( lda < n ) {
info = -11;
LAPACKE_xerbla( "LAPACKE_dgejsv_work", info );
return info;
}
if( ldu < n ) {
info = -14;
LAPACKE_xerbla( "LAPACKE_dgejsv_work", info );
return info;
}
if( ldv < n ) {
info = -16;
LAPACKE_xerbla( "LAPACKE_dgejsv_work", info );
return info;
}
/* Allocate memory for temporary array(s) */
a_t = (double*)LAPACKE_malloc( sizeof(double) * lda_t * MAX(1,n) );
if( a_t == NULL ) {
goto exit_level_0;
}
if( LAPACKE_lsame( jobu, 'f' ) || LAPACKE_lsame( jobu, 'u' ) ||
LAPACKE_lsame( jobu, 'w' ) ) {
u_t = (double*)LAPACKE_malloc( sizeof(double) * ldu_t * MAX(1,n) );
if( u_t == NULL ) {
goto exit_level_1;
}
}
if( LAPACKE_lsame( jobv, 'j' ) || LAPACKE_lsame( jobv, 'v' ) ||
LAPACKE_lsame( jobv, 'w' ) ) {
v_t = (double*)LAPACKE_malloc( sizeof(double) * ldv_t * MAX(1,n) );
if( v_t == NULL ) {
goto exit_level_2;
}
}
/* Transpose input matrices */
LAPACKE_dge_trans( matrix_order, m, n, a, lda, a_t, lda_t );
if( LAPACKE_lsame( jobu, 'f' ) || LAPACKE_lsame( jobu, 'u' ) ||
LAPACKE_lsame( jobu, 'w' ) ) {
LAPACKE_dge_trans( matrix_order, nu, n, u, ldu, u_t, ldu_t );
}
if( LAPACKE_lsame( jobv, 'j' ) || LAPACKE_lsame( jobv, 'v' ) ||
LAPACKE_lsame( jobv, 'w' ) ) {
LAPACKE_dge_trans( matrix_order, nv, n, v, ldv, v_t, ldv_t );
}
/* Call LAPACK function and adjust info */
LAPACK_dgejsv( &joba, &jobu, &jobv, &jobr, &jobt, &jobp, &m, &n, a_t,
&lda_t, sva, u_t, &ldu_t, v_t, &ldv_t, work, &lwork,
iwork, &info );
if( info < 0 ) {
info = info - 1;
}
/* Transpose output matrices */
if( LAPACKE_lsame( jobu, 'f' ) || LAPACKE_lsame( jobu, 'u' ) ||
LAPACKE_lsame( jobu, 'w' ) ) {
LAPACKE_dge_trans( LAPACK_COL_MAJOR, nu, n, u_t, ldu_t, u, ldu );
}
if( LAPACKE_lsame( jobv, 'j' ) || LAPACKE_lsame( jobv, 'v' ) ||
LAPACKE_lsame( jobv, 'w' ) ) {
LAPACKE_dge_trans( LAPACK_COL_MAJOR, nv, n, v_t, ldv_t, v, ldv );
}
/* Release memory and exit */
if( LAPACKE_lsame( jobv, 'j' ) || LAPACKE_lsame( jobv, 'v' ) ||
LAPACKE_lsame( jobv, 'w' ) ) {
LAPACKE_free( v_t );
}
exit_level_2:
if( LAPACKE_lsame( jobu, 'f' ) || LAPACKE_lsame( jobu, 'u' ) ||
LAPACKE_lsame( jobu, 'w' ) ) {
LAPACKE_free( u_t );
}
exit_level_1:
LAPACKE_free( a_t );
exit_level_0:
LAPACKE_xerbla( "LAPACKE_dgejsv_work", info );
}
} else {
info = -1;
LAPACKE_xerbla( "LAPACKE_dgejsv_work", info );
}
return info;
}

Here is the call graph for this function:

Here is the caller graph for this function: