LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Classes Files Functions Variables Typedefs Macros
dqrt03.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine dqrt03 (M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK, RWORK, RESULT)
 DQRT03

Function/Subroutine Documentation

subroutine dqrt03 ( integer  M,
integer  N,
integer  K,
double precision, dimension( lda, * )  AF,
double precision, dimension( lda, * )  C,
double precision, dimension( lda, * )  CC,
double precision, dimension( lda, * )  Q,
integer  LDA,
double precision, dimension( * )  TAU,
double precision, dimension( lwork )  WORK,
integer  LWORK,
double precision, dimension( * )  RWORK,
double precision, dimension( * )  RESULT 
)

DQRT03

Purpose:
 DQRT03 tests DORMQR, which computes Q*C, Q'*C, C*Q or C*Q'.

 DQRT03 compares the results of a call to DORMQR with the results of
 forming Q explicitly by a call to DORGQR and then performing matrix
 multiplication by a call to DGEMM.
Parameters
[in]M
          M is INTEGER
          The order of the orthogonal matrix Q.  M >= 0.
[in]N
          N is INTEGER
          The number of rows or columns of the matrix C; C is m-by-n if
          Q is applied from the left, or n-by-m if Q is applied from
          the right.  N >= 0.
[in]K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          orthogonal matrix Q.  M >= K >= 0.
[in]AF
          AF is DOUBLE PRECISION array, dimension (LDA,N)
          Details of the QR factorization of an m-by-n matrix, as
          returnedby DGEQRF. See SGEQRF for further details.
[out]C
          C is DOUBLE PRECISION array, dimension (LDA,N)
[out]CC
          CC is DOUBLE PRECISION array, dimension (LDA,N)
[out]Q
          Q is DOUBLE PRECISION array, dimension (LDA,M)
[in]LDA
          LDA is INTEGER
          The leading dimension of the arrays AF, C, CC, and Q.
[in]TAU
          TAU is DOUBLE PRECISION array, dimension (min(M,N))
          The scalar factors of the elementary reflectors corresponding
          to the QR factorization in AF.
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The length of WORK.  LWORK must be at least M, and should be
          M*NB, where NB is the blocksize for this environment.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (M)
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (4)
          The test ratios compare two techniques for multiplying a
          random matrix C by an m-by-m orthogonal matrix Q.
          RESULT(1) = norm( Q*C - Q*C )  / ( M * norm(C) * EPS )
          RESULT(2) = norm( C*Q - C*Q )  / ( M * norm(C) * EPS )
          RESULT(3) = norm( Q'*C - Q'*C )/ ( M * norm(C) * EPS )
          RESULT(4) = norm( C*Q' - C*Q' )/ ( M * norm(C) * EPS )
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011

Definition at line 136 of file dqrt03.f.

Here is the call graph for this function:

Here is the caller graph for this function: