LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Classes Files Functions Variables Typedefs Macros
lapacke_cgbbrd_work.c File Reference
#include "lapacke_utils.h"
Include dependency graph for lapacke_cgbbrd_work.c:

Go to the source code of this file.

Functions/Subroutines

lapack_int LAPACKE_cgbbrd_work (int matrix_order, char vect, lapack_int m, lapack_int n, lapack_int ncc, lapack_int kl, lapack_int ku, lapack_complex_float *ab, lapack_int ldab, float *d, float *e, lapack_complex_float *q, lapack_int ldq, lapack_complex_float *pt, lapack_int ldpt, lapack_complex_float *c, lapack_int ldc, lapack_complex_float *work, float *rwork)

Function/Subroutine Documentation

lapack_int LAPACKE_cgbbrd_work ( int  matrix_order,
char  vect,
lapack_int  m,
lapack_int  n,
lapack_int  ncc,
lapack_int  kl,
lapack_int  ku,
lapack_complex_float ab,
lapack_int  ldab,
float *  d,
float *  e,
lapack_complex_float q,
lapack_int  ldq,
lapack_complex_float pt,
lapack_int  ldpt,
lapack_complex_float c,
lapack_int  ldc,
lapack_complex_float work,
float *  rwork 
)

Definition at line 36 of file lapacke_cgbbrd_work.c.

{
lapack_int info = 0;
if( matrix_order == LAPACK_COL_MAJOR ) {
/* Call LAPACK function and adjust info */
LAPACK_cgbbrd( &vect, &m, &n, &ncc, &kl, &ku, ab, &ldab, d, e, q, &ldq,
pt, &ldpt, c, &ldc, work, rwork, &info );
if( info < 0 ) {
info = info - 1;
}
} else if( matrix_order == LAPACK_ROW_MAJOR ) {
lapack_int ldab_t = MAX(1,kl+ku+1);
lapack_int ldc_t = MAX(1,m);
lapack_int ldpt_t = MAX(1,n);
lapack_int ldq_t = MAX(1,m);
lapack_complex_float* ab_t = NULL;
lapack_complex_float* q_t = NULL;
lapack_complex_float* pt_t = NULL;
lapack_complex_float* c_t = NULL;
/* Check leading dimension(s) */
if( ldab < n ) {
info = -9;
LAPACKE_xerbla( "LAPACKE_cgbbrd_work", info );
return info;
}
if( ldc < ncc ) {
info = -17;
LAPACKE_xerbla( "LAPACKE_cgbbrd_work", info );
return info;
}
if( ldpt < n ) {
info = -15;
LAPACKE_xerbla( "LAPACKE_cgbbrd_work", info );
return info;
}
if( ldq < m ) {
info = -13;
LAPACKE_xerbla( "LAPACKE_cgbbrd_work", info );
return info;
}
/* Allocate memory for temporary array(s) */
LAPACKE_malloc( sizeof(lapack_complex_float) * ldab_t * MAX(1,n) );
if( ab_t == NULL ) {
goto exit_level_0;
}
if( LAPACKE_lsame( vect, 'b' ) || LAPACKE_lsame( vect, 'q' ) ) {
ldq_t * MAX(1,m) );
if( q_t == NULL ) {
goto exit_level_1;
}
}
if( LAPACKE_lsame( vect, 'b' ) || LAPACKE_lsame( vect, 'p' ) ) {
ldpt_t * MAX(1,n) );
if( pt_t == NULL ) {
goto exit_level_2;
}
}
if( ncc != 0 ) {
ldc_t * MAX(1,ncc) );
if( c_t == NULL ) {
goto exit_level_3;
}
}
/* Transpose input matrices */
LAPACKE_cgb_trans( matrix_order, m, n, kl, ku, ab, ldab, ab_t, ldab_t );
if( ncc != 0 ) {
LAPACKE_cge_trans( matrix_order, m, ncc, c, ldc, c_t, ldc_t );
}
/* Call LAPACK function and adjust info */
LAPACK_cgbbrd( &vect, &m, &n, &ncc, &kl, &ku, ab_t, &ldab_t, d, e, q_t,
&ldq_t, pt_t, &ldpt_t, c_t, &ldc_t, work, rwork, &info );
if( info < 0 ) {
info = info - 1;
}
/* Transpose output matrices */
LAPACKE_cgb_trans( LAPACK_COL_MAJOR, m, n, kl, ku, ab_t, ldab_t, ab,
ldab );
if( LAPACKE_lsame( vect, 'b' ) || LAPACKE_lsame( vect, 'q' ) ) {
LAPACKE_cge_trans( LAPACK_COL_MAJOR, m, m, q_t, ldq_t, q, ldq );
}
if( LAPACKE_lsame( vect, 'b' ) || LAPACKE_lsame( vect, 'p' ) ) {
LAPACKE_cge_trans( LAPACK_COL_MAJOR, n, n, pt_t, ldpt_t, pt, ldpt );
}
if( ncc != 0 ) {
LAPACKE_cge_trans( LAPACK_COL_MAJOR, m, ncc, c_t, ldc_t, c, ldc );
}
/* Release memory and exit */
if( ncc != 0 ) {
LAPACKE_free( c_t );
}
exit_level_3:
if( LAPACKE_lsame( vect, 'b' ) || LAPACKE_lsame( vect, 'p' ) ) {
LAPACKE_free( pt_t );
}
exit_level_2:
if( LAPACKE_lsame( vect, 'b' ) || LAPACKE_lsame( vect, 'q' ) ) {
LAPACKE_free( q_t );
}
exit_level_1:
LAPACKE_free( ab_t );
exit_level_0:
LAPACKE_xerbla( "LAPACKE_cgbbrd_work", info );
}
} else {
info = -1;
LAPACKE_xerbla( "LAPACKE_cgbbrd_work", info );
}
return info;
}

Here is the call graph for this function:

Here is the caller graph for this function: