LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Classes Files Functions Variables Typedefs Macros
zla_gerpvgrw.f File Reference

Go to the source code of this file.

Functions/Subroutines

DOUBLE PRECISION function zla_gerpvgrw (N, NCOLS, A, LDA, AF, LDAF)
 ZLA_GERPVGRW multiplies a square real matrix by a complex matrix.

Function/Subroutine Documentation

DOUBLE PRECISION function zla_gerpvgrw ( integer  N,
integer  NCOLS,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldaf, * )  AF,
integer  LDAF 
)

ZLA_GERPVGRW multiplies a square real matrix by a complex matrix.

Download ZLA_GERPVGRW + dependencies [TGZ] [ZIP] [TXT]
Purpose:
 ZLA_GERPVGRW computes the reciprocal pivot growth factor
 norm(A)/norm(U). The "max absolute element" norm is used. If this is
 much less than 1, the stability of the LU factorization of the
 (equilibrated) matrix A could be poor. This also means that the
 solution X, estimated condition numbers, and error bounds could be
 unreliable.
Parameters
[in]N
          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.
[in]NCOLS
          NCOLS is INTEGER
     The number of columns of the matrix A. NCOLS >= 0.
[in]A
          A is DOUBLE PRECISION array, dimension (LDA,N)
     On entry, the N-by-N matrix A.
[in]LDA
          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).
[in]AF
          AF is DOUBLE PRECISION array, dimension (LDAF,N)
     The factors L and U from the factorization
     A = P*L*U as computed by ZGETRF.
[in]LDAF
          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
September 2012

Definition at line 100 of file zla_gerpvgrw.f.

Here is the caller graph for this function: