LAPACK
3.5.0
LAPACK: Linear Algebra PACKage
Main Page
Data Types List
Files
File List
File Members
All
Classes
Files
Functions
Variables
Typedefs
Macros
claev2.f
Go to the documentation of this file.
1
*> \brief \b CLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
2
*
3
* =========== DOCUMENTATION ===========
4
*
5
* Online html documentation available at
6
* http://www.netlib.org/lapack/explore-html/
7
*
8
*> \htmlonly
9
*> Download CLAEV2 + dependencies
10
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claev2.f">
11
*> [TGZ]</a>
12
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claev2.f">
13
*> [ZIP]</a>
14
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claev2.f">
15
*> [TXT]</a>
16
*> \endhtmlonly
17
*
18
* Definition:
19
* ===========
20
*
21
* SUBROUTINE CLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
22
*
23
* .. Scalar Arguments ..
24
* REAL CS1, RT1, RT2
25
* COMPLEX A, B, C, SN1
26
* ..
27
*
28
*
29
*> \par Purpose:
30
* =============
31
*>
32
*> \verbatim
33
*>
34
*> CLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix
35
*> [ A B ]
36
*> [ CONJG(B) C ].
37
*> On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
38
*> eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
39
*> eigenvector for RT1, giving the decomposition
40
*>
41
*> [ CS1 CONJG(SN1) ] [ A B ] [ CS1 -CONJG(SN1) ] = [ RT1 0 ]
42
*> [-SN1 CS1 ] [ CONJG(B) C ] [ SN1 CS1 ] [ 0 RT2 ].
43
*> \endverbatim
44
*
45
* Arguments:
46
* ==========
47
*
48
*> \param[in] A
49
*> \verbatim
50
*> A is COMPLEX
51
*> The (1,1) element of the 2-by-2 matrix.
52
*> \endverbatim
53
*>
54
*> \param[in] B
55
*> \verbatim
56
*> B is COMPLEX
57
*> The (1,2) element and the conjugate of the (2,1) element of
58
*> the 2-by-2 matrix.
59
*> \endverbatim
60
*>
61
*> \param[in] C
62
*> \verbatim
63
*> C is COMPLEX
64
*> The (2,2) element of the 2-by-2 matrix.
65
*> \endverbatim
66
*>
67
*> \param[out] RT1
68
*> \verbatim
69
*> RT1 is REAL
70
*> The eigenvalue of larger absolute value.
71
*> \endverbatim
72
*>
73
*> \param[out] RT2
74
*> \verbatim
75
*> RT2 is REAL
76
*> The eigenvalue of smaller absolute value.
77
*> \endverbatim
78
*>
79
*> \param[out] CS1
80
*> \verbatim
81
*> CS1 is REAL
82
*> \endverbatim
83
*>
84
*> \param[out] SN1
85
*> \verbatim
86
*> SN1 is COMPLEX
87
*> The vector (CS1, SN1) is a unit right eigenvector for RT1.
88
*> \endverbatim
89
*
90
* Authors:
91
* ========
92
*
93
*> \author Univ. of Tennessee
94
*> \author Univ. of California Berkeley
95
*> \author Univ. of Colorado Denver
96
*> \author NAG Ltd.
97
*
98
*> \date September 2012
99
*
100
*> \ingroup complexOTHERauxiliary
101
*
102
*> \par Further Details:
103
* =====================
104
*>
105
*> \verbatim
106
*>
107
*> RT1 is accurate to a few ulps barring over/underflow.
108
*>
109
*> RT2 may be inaccurate if there is massive cancellation in the
110
*> determinant A*C-B*B; higher precision or correctly rounded or
111
*> correctly truncated arithmetic would be needed to compute RT2
112
*> accurately in all cases.
113
*>
114
*> CS1 and SN1 are accurate to a few ulps barring over/underflow.
115
*>
116
*> Overflow is possible only if RT1 is within a factor of 5 of overflow.
117
*> Underflow is harmless if the input data is 0 or exceeds
118
*> underflow_threshold / macheps.
119
*> \endverbatim
120
*>
121
* =====================================================================
122
SUBROUTINE
claev2
( A, B, C, RT1, RT2, CS1, SN1 )
123
*
124
* -- LAPACK auxiliary routine (version 3.4.2) --
125
* -- LAPACK is a software package provided by Univ. of Tennessee, --
126
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
127
* September 2012
128
*
129
* .. Scalar Arguments ..
130
REAL
cs1, rt1, rt2
131
COMPLEX
a,
b
, c, sn1
132
* ..
133
*
134
* =====================================================================
135
*
136
* .. Parameters ..
137
REAL
zero
138
parameter( zero = 0.0e0 )
139
REAL
one
140
parameter( one = 1.0e0 )
141
* ..
142
* .. Local Scalars ..
143
REAL
t
144
COMPLEX
w
145
* ..
146
* .. External Subroutines ..
147
EXTERNAL
slaev2
148
* ..
149
* .. Intrinsic Functions ..
150
INTRINSIC
abs, conjg, real
151
* ..
152
* .. Executable Statements ..
153
*
154
IF
( abs(
b
).EQ.zero )
THEN
155
w = one
156
ELSE
157
w = conjg(
b
) / abs(
b
)
158
END IF
159
CALL
slaev2
(
REAL( A )
, abs(
b
),
REAL( C )
, rt1, rt2, cs1, t )
160
sn1 = w*t
161
RETURN
162
*
163
* End of CLAEV2
164
*
165
END
src
claev2.f
Generated on Mon Dec 30 2013 16:09:38 for LAPACK by
1.8.1.2