LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Classes Files Functions Variables Typedefs Macros
zhpt01.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine zhpt01 (UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID)
 ZHPT01

Function/Subroutine Documentation

subroutine zhpt01 ( character  UPLO,
integer  N,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
integer, dimension( * )  IPIV,
complex*16, dimension( ldc, * )  C,
integer  LDC,
double precision, dimension( * )  RWORK,
double precision  RESID 
)

ZHPT01

Purpose:
 ZHPT01 reconstructs a Hermitian indefinite packed matrix A from its
 block L*D*L' or U*D*U' factorization and computes the residual
    norm( C - A ) / ( N * norm(A) * EPS ),
 where C is the reconstructed matrix, EPS is the machine epsilon,
 L' is the conjugate transpose of L, and U' is the conjugate transpose
 of U.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The number of rows and columns of the matrix A.  N >= 0.
[in]A
          A is COMPLEX*16 array, dimension (N*(N+1)/2)
          The original Hermitian matrix A, stored as a packed
          triangular matrix.
[in]AFAC
          AFAC is COMPLEX*16 array, dimension (N*(N+1)/2)
          The factored form of the matrix A, stored as a packed
          triangular matrix.  AFAC contains the block diagonal matrix D
          and the multipliers used to obtain the factor L or U from the
          block L*D*L' or U*D*U' factorization as computed by ZHPTRF.
[in]IPIV
          IPIV is INTEGER array, dimension (N)
          The pivot indices from ZHPTRF.
[out]C
          C is COMPLEX*16 array, dimension (LDC,N)
[in]LDC
          LDC is INTEGER
          The leading dimension of the array C.  LDC >= max(1,N).
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]RESID
          RESID is DOUBLE PRECISION
          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011

Definition at line 114 of file zhpt01.f.

Here is the call graph for this function:

Here is the caller graph for this function: