LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Classes Files Functions Variables Typedefs Macros
cchkhe_rook.f
Go to the documentation of this file.
1 *> \brief \b CCHKHE_ROOK
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CCHKHE_ROOK( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
12 * THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
13 * XACT, WORK, RWORK, IWORK, NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NMAX, NN, NNB, NNS, NOUT
18 * REAL THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
23 * REAL RWORK( * )
24 * COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
25 * $ WORK( * ), X( * ), XACT( * )
26 * ..
27 *
28 *
29 *> \par Purpose:
30 * =============
31 *>
32 *> \verbatim
33 *>
34 *> CCHKHE_ROOK tests CHETRF_ROOK, -TRI_ROOK, -TRS_ROOK,
35 *> and -CON_ROOK.
36 *> \endverbatim
37 *
38 * Arguments:
39 * ==========
40 *
41 *> \param[in] DOTYPE
42 *> \verbatim
43 *> DOTYPE is LOGICAL array, dimension (NTYPES)
44 *> The matrix types to be used for testing. Matrices of type j
45 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
46 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
47 *> \endverbatim
48 *>
49 *> \param[in] NN
50 *> \verbatim
51 *> NN is INTEGER
52 *> The number of values of N contained in the vector NVAL.
53 *> \endverbatim
54 *>
55 *> \param[in] NVAL
56 *> \verbatim
57 *> NVAL is INTEGER array, dimension (NN)
58 *> The values of the matrix dimension N.
59 *> \endverbatim
60 *>
61 *> \param[in] NNB
62 *> \verbatim
63 *> NNB is INTEGER
64 *> The number of values of NB contained in the vector NBVAL.
65 *> \endverbatim
66 *>
67 *> \param[in] NBVAL
68 *> \verbatim
69 *> NBVAL is INTEGER array, dimension (NBVAL)
70 *> The values of the blocksize NB.
71 *> \endverbatim
72 *>
73 *> \param[in] NNS
74 *> \verbatim
75 *> NNS is INTEGER
76 *> The number of values of NRHS contained in the vector NSVAL.
77 *> \endverbatim
78 *>
79 *> \param[in] NSVAL
80 *> \verbatim
81 *> NSVAL is INTEGER array, dimension (NNS)
82 *> The values of the number of right hand sides NRHS.
83 *> \endverbatim
84 *>
85 *> \param[in] THRESH
86 *> \verbatim
87 *> THRESH is REAL
88 *> The threshold value for the test ratios. A result is
89 *> included in the output file if RESULT >= THRESH. To have
90 *> every test ratio printed, use THRESH = 0.
91 *> \endverbatim
92 *>
93 *> \param[in] TSTERR
94 *> \verbatim
95 *> TSTERR is LOGICAL
96 *> Flag that indicates whether error exits are to be tested.
97 *> \endverbatim
98 *>
99 *> \param[in] NMAX
100 *> \verbatim
101 *> NMAX is INTEGER
102 *> The maximum value permitted for N, used in dimensioning the
103 *> work arrays.
104 *> \endverbatim
105 *>
106 *> \param[out] A
107 *> \verbatim
108 *> A is COMPLEX array, dimension (NMAX*NMAX)
109 *> \endverbatim
110 *>
111 *> \param[out] AFAC
112 *> \verbatim
113 *> AFAC is COMPLEX array, dimension (NMAX*NMAX)
114 *> \endverbatim
115 *>
116 *> \param[out] AINV
117 *> \verbatim
118 *> AINV is COMPLEX array, dimension (NMAX*NMAX)
119 *> \endverbatim
120 *>
121 *> \param[out] B
122 *> \verbatim
123 *> B is COMPLEX array, dimension (NMAX*NSMAX)
124 *> where NSMAX is the largest entry in NSVAL.
125 *> \endverbatim
126 *>
127 *> \param[out] X
128 *> \verbatim
129 *> X is COMPLEX array, dimension (NMAX*NSMAX)
130 *> \endverbatim
131 *>
132 *> \param[out] XACT
133 *> \verbatim
134 *> XACT is COMPLEX array, dimension (NMAX*NSMAX)
135 *> \endverbatim
136 *>
137 *> \param[out] WORK
138 *> \verbatim
139 *> WORK is COMPLEX array, dimension (NMAX*max(3,NSMAX))
140 *> \endverbatim
141 *>
142 *> \param[out] RWORK
143 *> \verbatim
144 *> RWORK is REAL array, dimension (max(NMAX,2*NSMAX)
145 *> \endverbatim
146 *>
147 *> \param[out] IWORK
148 *> \verbatim
149 *> IWORK is INTEGER array, dimension (2*NMAX)
150 *> \endverbatim
151 *>
152 *> \param[in] NOUT
153 *> \verbatim
154 *> NOUT is INTEGER
155 *> The unit number for output.
156 *> \endverbatim
157 *
158 * Authors:
159 * ========
160 *
161 *> \author Univ. of Tennessee
162 *> \author Univ. of California Berkeley
163 *> \author Univ. of Colorado Denver
164 *> \author NAG Ltd.
165 *
166 *> \date November 2013
167 *
168 *> \ingroup complex_lin
169 *
170 * =====================================================================
171  SUBROUTINE cchkhe_rook( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
172  $ thresh, tsterr, nmax, a, afac, ainv, b, x,
173  $ xact, work, rwork, iwork, nout )
174 *
175 * -- LAPACK test routine (version 3.5.0) --
176 * -- LAPACK is a software package provided by Univ. of Tennessee, --
177 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
178 * November 2013
179 *
180 * .. Scalar Arguments ..
181  LOGICAL tsterr
182  INTEGER nmax, nn, nnb, nns, nout
183  REAL thresh
184 * ..
185 * .. Array Arguments ..
186  LOGICAL dotype( * )
187  INTEGER iwork( * ), nbval( * ), nsval( * ), nval( * )
188  REAL rwork( * )
189  COMPLEX a( * ), afac( * ), ainv( * ), b( * ),
190  $ work( * ), x( * ), xact( * )
191 * ..
192 *
193 * =====================================================================
194 *
195 * .. Parameters ..
196  REAL zero, one
197  parameter( zero = 0.0e+0, one = 1.0e+0 )
198  REAL onehalf
199  parameter( onehalf = 0.5e+0 )
200  REAL eight, sevten
201  parameter( eight = 8.0e+0, sevten = 17.0e+0 )
202  COMPLEX czero
203  parameter( czero = ( 0.0e+0, 0.0e+0 ) )
204  INTEGER ntypes
205  parameter( ntypes = 10 )
206  INTEGER ntests
207  parameter( ntests = 7 )
208 * ..
209 * .. Local Scalars ..
210  LOGICAL trfcon, zerot
211  CHARACTER dist, type, uplo, xtype
212  CHARACTER*3 path, matpath
213  INTEGER i, i1, i2, imat, in, inb, info, ioff, irhs,
214  $ itemp, itemp2, iuplo, izero, j, k, kl, ku, lda,
215  $ lwork, mode, n, nb, nerrs, nfail, nimat, nrhs,
216  $ nrun, nt
217  REAL alpha, anorm, cndnum, const, lam_max, lam_min,
218  $ rcond, rcondc, stemp
219 * ..
220 * .. Local Arrays ..
221  CHARACTER uplos( 2 )
222  INTEGER iseed( 4 ), iseedy( 4 ), idummy( 1 )
223  REAL result( ntests )
224  COMPLEX cdummy( 1 )
225 * ..
226 * .. External Functions ..
227  REAL clange, clanhe, sget06
228  EXTERNAL clange, clanhe, sget06
229 * ..
230 * .. External Subroutines ..
231  EXTERNAL alaerh, alahd, alasum, cerrhe, cheevx, cget04,
235 * ..
236 * .. Intrinsic Functions ..
237  INTRINSIC abs, max, min, sqrt
238 * ..
239 * .. Scalars in Common ..
240  LOGICAL lerr, ok
241  CHARACTER*32 srnamt
242  INTEGER infot, nunit
243 * ..
244 * .. Common blocks ..
245  COMMON / infoc / infot, nunit, ok, lerr
246  COMMON / srnamc / srnamt
247 * ..
248 * .. Data statements ..
249  DATA iseedy / 1988, 1989, 1990, 1991 /
250  DATA uplos / 'U', 'L' /
251 * ..
252 * .. Executable Statements ..
253 *
254 * Initialize constants and the random number seed.
255 *
256  alpha = ( one+sqrt( sevten ) ) / eight
257 *
258 * Test path
259 *
260  path( 1: 1 ) = 'Complex precision'
261  path( 2: 3 ) = 'HR'
262 *
263 * Path to generate matrices
264 *
265  matpath( 1: 1 ) = 'Complex precision'
266  matpath( 2: 3 ) = 'HE'
267 *
268  nrun = 0
269  nfail = 0
270  nerrs = 0
271  DO 10 i = 1, 4
272  iseed( i ) = iseedy( i )
273  10 CONTINUE
274 *
275 * Test the error exits
276 *
277  IF( tsterr )
278  $ CALL cerrhe( path, nout )
279  infot = 0
280 *
281 * Set the minimum block size for which the block routine should
282 * be used, which will be later returned by ILAENV
283 *
284  CALL xlaenv( 2, 2 )
285 *
286 * Do for each value of N in NVAL
287 *
288  DO 270 in = 1, nn
289  n = nval( in )
290  lda = max( n, 1 )
291  xtype = 'N'
292  nimat = ntypes
293  IF( n.LE.0 )
294  $ nimat = 1
295 *
296  izero = 0
297 *
298 * Do for each value of matrix type IMAT
299 *
300  DO 260 imat = 1, nimat
301 *
302 * Do the tests only if DOTYPE( IMAT ) is true.
303 *
304  IF( .NOT.dotype( imat ) )
305  $ go to 260
306 *
307 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
308 *
309  zerot = imat.GE.3 .AND. imat.LE.6
310  IF( zerot .AND. n.LT.imat-2 )
311  $ go to 260
312 *
313 * Do first for UPLO = 'U', then for UPLO = 'L'
314 *
315  DO 250 iuplo = 1, 2
316  uplo = uplos( iuplo )
317 *
318 * Begin generate the test matrix A.
319 *
320 * Set up parameters with CLATB4 for the matrix generator
321 * based on the type of matrix to be generated.
322 *
323  CALL clatb4( matpath, imat, n, n, type, kl, ku, anorm,
324  $ mode, cndnum, dist )
325 *
326 * Generate a matrix with CLATMS.
327 *
328  srnamt = 'CLATMS'
329  CALL clatms( n, n, dist, iseed, type, rwork, mode,
330  $ cndnum, anorm, kl, ku, uplo, a, lda,
331  $ work, info )
332 *
333 * Check error code from CLATMS and handle error.
334 *
335  IF( info.NE.0 ) THEN
336  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n,
337  $ -1, -1, -1, imat, nfail, nerrs, nout )
338 *
339 * Skip all tests for this generated matrix
340 *
341  go to 250
342  END IF
343 *
344 * For matrix types 3-6, zero one or more rows and
345 * columns of the matrix to test that INFO is returned
346 * correctly.
347 *
348  IF( zerot ) THEN
349  IF( imat.EQ.3 ) THEN
350  izero = 1
351  ELSE IF( imat.EQ.4 ) THEN
352  izero = n
353  ELSE
354  izero = n / 2 + 1
355  END IF
356 *
357  IF( imat.LT.6 ) THEN
358 *
359 * Set row and column IZERO to zero.
360 *
361  IF( iuplo.EQ.1 ) THEN
362  ioff = ( izero-1 )*lda
363  DO 20 i = 1, izero - 1
364  a( ioff+i ) = czero
365  20 CONTINUE
366  ioff = ioff + izero
367  DO 30 i = izero, n
368  a( ioff ) = czero
369  ioff = ioff + lda
370  30 CONTINUE
371  ELSE
372  ioff = izero
373  DO 40 i = 1, izero - 1
374  a( ioff ) = czero
375  ioff = ioff + lda
376  40 CONTINUE
377  ioff = ioff - izero
378  DO 50 i = izero, n
379  a( ioff+i ) = czero
380  50 CONTINUE
381  END IF
382  ELSE
383  IF( iuplo.EQ.1 ) THEN
384 *
385 * Set the first IZERO rows and columns to zero.
386 *
387  ioff = 0
388  DO 70 j = 1, n
389  i2 = min( j, izero )
390  DO 60 i = 1, i2
391  a( ioff+i ) = czero
392  60 CONTINUE
393  ioff = ioff + lda
394  70 CONTINUE
395  ELSE
396 *
397 * Set the last IZERO rows and columns to zero.
398 *
399  ioff = 0
400  DO 90 j = 1, n
401  i1 = max( j, izero )
402  DO 80 i = i1, n
403  a( ioff+i ) = czero
404  80 CONTINUE
405  ioff = ioff + lda
406  90 CONTINUE
407  END IF
408  END IF
409  ELSE
410  izero = 0
411  END IF
412 *
413 * End generate the test matrix A.
414 *
415 *
416 * Do for each value of NB in NBVAL
417 *
418  DO 240 inb = 1, nnb
419 *
420 * Set the optimal blocksize, which will be later
421 * returned by ILAENV.
422 *
423  nb = nbval( inb )
424  CALL xlaenv( 1, nb )
425 *
426 * Copy the test matrix A into matrix AFAC which
427 * will be factorized in place. This is needed to
428 * preserve the test matrix A for subsequent tests.
429 *
430  CALL clacpy( uplo, n, n, a, lda, afac, lda )
431 *
432 * Compute the L*D*L**T or U*D*U**T factorization of the
433 * matrix. IWORK stores details of the interchanges and
434 * the block structure of D. AINV is a work array for
435 * block factorization, LWORK is the length of AINV.
436 *
437  lwork = max( 2, nb )*lda
438  srnamt = 'CHETRF_ROOK'
439  CALL chetrf_rook( uplo, n, afac, lda, iwork, ainv,
440  $ lwork, info )
441 *
442 * Adjust the expected value of INFO to account for
443 * pivoting.
444 *
445  k = izero
446  IF( k.GT.0 ) THEN
447  100 CONTINUE
448  IF( iwork( k ).LT.0 ) THEN
449  IF( iwork( k ).NE.-k ) THEN
450  k = -iwork( k )
451  go to 100
452  END IF
453  ELSE IF( iwork( k ).NE.k ) THEN
454  k = iwork( k )
455  go to 100
456  END IF
457  END IF
458 *
459 * Check error code from CHETRF_ROOK and handle error.
460 *
461  IF( info.NE.k)
462  $ CALL alaerh( path, 'CHETRF_ROOK', info, k,
463  $ uplo, n, n, -1, -1, nb, imat,
464  $ nfail, nerrs, nout )
465 *
466 * Set the condition estimate flag if the INFO is not 0.
467 *
468  IF( info.NE.0 ) THEN
469  trfcon = .true.
470  ELSE
471  trfcon = .false.
472  END IF
473 *
474 *+ TEST 1
475 * Reconstruct matrix from factors and compute residual.
476 *
477  CALL chet01_rook( uplo, n, a, lda, afac, lda, iwork,
478  $ ainv, lda, rwork, result( 1 ) )
479  nt = 1
480 *
481 *+ TEST 2
482 * Form the inverse and compute the residual,
483 * if the factorization was competed without INFO > 0
484 * (i.e. there is no zero rows and columns).
485 * Do it only for the first block size.
486 *
487  IF( inb.EQ.1 .AND. .NOT.trfcon ) THEN
488  CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
489  srnamt = 'CHETRI_ROOK'
490  CALL chetri_rook( uplo, n, ainv, lda, iwork, work,
491  $ info )
492 *
493 * Check error code from CHETRI_ROOK and handle error.
494 *
495  IF( info.NE.0 )
496  $ CALL alaerh( path, 'CHETRI_ROOK', info, -1,
497  $ uplo, n, n, -1, -1, -1, imat,
498  $ nfail, nerrs, nout )
499 *
500 * Compute the residual for a Hermitian matrix times
501 * its inverse.
502 *
503  CALL cpot03( uplo, n, a, lda, ainv, lda, work, lda,
504  $ rwork, rcondc, result( 2 ) )
505  nt = 2
506  END IF
507 *
508 * Print information about the tests that did not pass
509 * the threshold.
510 *
511  DO 110 k = 1, nt
512  IF( result( k ).GE.thresh ) THEN
513  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
514  $ CALL alahd( nout, path )
515  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
516  $ result( k )
517  nfail = nfail + 1
518  END IF
519  110 CONTINUE
520  nrun = nrun + nt
521 *
522 *+ TEST 3
523 * Compute largest element in U or L
524 *
525  result( 3 ) = zero
526  stemp = zero
527 *
528  const = ( ( alpha**2-one ) / ( alpha**2-onehalf ) ) /
529  $ ( one-alpha )
530 *
531  IF( iuplo.EQ.1 ) THEN
532 *
533 * Compute largest element in U
534 *
535  k = n
536  120 CONTINUE
537  IF( k.LE.1 )
538  $ go to 130
539 *
540  IF( iwork( k ).GT.zero ) THEN
541 *
542 * Get max absolute value from elements
543 * in column k in U
544 *
545  stemp = clange( 'M', k-1, 1,
546  $ afac( ( k-1 )*lda+1 ), lda, rwork )
547  ELSE
548 *
549 * Get max absolute value from elements
550 * in columns k and k-1 in U
551 *
552  stemp = clange( 'M', k-2, 2,
553  $ afac( ( k-2 )*lda+1 ), lda, rwork )
554  k = k - 1
555 *
556  END IF
557 *
558 * STEMP should be bounded by CONST
559 *
560  stemp = stemp - const + thresh
561  IF( stemp.GT.result( 3 ) )
562  $ result( 3 ) = stemp
563 *
564  k = k - 1
565 *
566  go to 120
567  130 CONTINUE
568 *
569  ELSE
570 *
571 * Compute largest element in L
572 *
573  k = 1
574  140 CONTINUE
575  IF( k.GE.n )
576  $ go to 150
577 *
578  IF( iwork( k ).GT.zero ) THEN
579 *
580 * Get max absolute value from elements
581 * in column k in L
582 *
583  stemp = clange( 'M', n-k, 1,
584  $ afac( ( k-1 )*lda+k+1 ), lda, rwork )
585  ELSE
586 *
587 * Get max absolute value from elements
588 * in columns k and k+1 in L
589 *
590  stemp = clange( 'M', n-k-1, 2,
591  $ afac( ( k-1 )*lda+k+2 ), lda, rwork )
592  k = k + 1
593 *
594  END IF
595 *
596 * STEMP should be bounded by CONST
597 *
598  stemp = stemp - const + thresh
599  IF( stemp.GT.result( 3 ) )
600  $ result( 3 ) = stemp
601 *
602  k = k + 1
603 *
604  go to 140
605  150 CONTINUE
606  END IF
607 *
608 *
609 *+ TEST 4
610 * Compute largest 2-Norm of 2-by-2 diag blocks
611 *
612  result( 4 ) = zero
613  stemp = zero
614 *
615  const = ( ( alpha**2-one ) / ( alpha**2-onehalf ) )*
616  $ ( ( one + alpha ) / ( one - alpha ) )
617  CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
618 *
619  IF( iuplo.EQ.1 ) THEN
620 *
621 * Loop backward for UPLO = 'U'
622 *
623  k = n
624  160 CONTINUE
625  IF( k.LE.1 )
626  $ go to 170
627 *
628  IF( iwork( k ).LT.zero ) THEN
629 *
630 * Get the two eigenvalues of a 2-by-2 block,
631 * store them in WORK array
632 *
633  CALL cheevx( 'N', 'A', uplo, 2,
634  $ ainv( ( k-2 )*lda+k-1 ), lda,stemp,
635  $ stemp, itemp, itemp, zero, itemp,
636  $ rwork, cdummy, 1, work, 16,
637  $ rwork( 3 ), iwork( n+1 ), idummy,
638  $ info )
639 *
640  lam_max = max( abs( rwork( 1 ) ),
641  $ abs( rwork( 2 ) ) )
642  lam_min = min( abs( rwork( 1 ) ),
643  $ abs( rwork( 2 ) ) )
644 *
645  stemp = lam_max / lam_min
646 *
647 * STEMP should be bounded by CONST
648 *
649  stemp = abs( stemp ) - const + thresh
650  IF( stemp.GT.result( 4 ) )
651  $ result( 4 ) = stemp
652  k = k - 1
653 *
654  END IF
655 *
656  k = k - 1
657 *
658  go to 160
659  170 CONTINUE
660 *
661  ELSE
662 *
663 * Loop forward for UPLO = 'L'
664 *
665  k = 1
666  180 CONTINUE
667  IF( k.GE.n )
668  $ go to 190
669 *
670  IF( iwork( k ).LT.zero ) THEN
671 *
672 * Get the two eigenvalues of a 2-by-2 block,
673 * store them in WORK array
674 *
675  CALL cheevx( 'N', 'A', uplo, 2,
676  $ ainv( ( k-1 )*lda+k ), lda, stemp,
677  $ stemp, itemp, itemp, zero, itemp,
678  $ rwork, cdummy, 1, work, 16,
679  $ rwork( 3 ), iwork( n+1 ), idummy,
680  $ info )
681 *
682  lam_max = max( abs( rwork( 1 ) ),
683  $ abs( rwork( 2 ) ) )
684  lam_min = min( abs( rwork( 1 ) ),
685  $ abs( rwork( 2 ) ) )
686 *
687  stemp = lam_max / lam_min
688 *
689 * STEMP should be bounded by CONST
690 *
691  stemp = abs( stemp ) - const + thresh
692  IF( stemp.GT.result( 4 ) )
693  $ result( 4 ) = stemp
694  k = k + 1
695 *
696  END IF
697 *
698  k = k + 1
699 *
700  go to 180
701  190 CONTINUE
702  END IF
703 *
704 * Print information about the tests that did not pass
705 * the threshold.
706 *
707  DO 200 k = 3, 4
708  IF( result( k ).GE.thresh ) THEN
709  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
710  $ CALL alahd( nout, path )
711  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
712  $ result( k )
713  nfail = nfail + 1
714  END IF
715  200 CONTINUE
716  nrun = nrun + 2
717 *
718 * Skip the other tests if this is not the first block
719 * size.
720 *
721  IF( inb.GT.1 )
722  $ go to 240
723 *
724 * Do only the condition estimate if INFO is not 0.
725 *
726  IF( trfcon ) THEN
727  rcondc = zero
728  go to 230
729  END IF
730 *
731 * Do for each value of NRHS in NSVAL.
732 *
733  DO 220 irhs = 1, nns
734  nrhs = nsval( irhs )
735 *
736 * Begin loop over NRHS values
737 *
738 *
739 *+ TEST 5 ( Using TRS_ROOK)
740 * Solve and compute residual for A * X = B.
741 *
742 * Choose a set of NRHS random solution vectors
743 * stored in XACT and set up the right hand side B
744 *
745  srnamt = 'CLARHS'
746  CALL clarhs( matpath, xtype, uplo, ' ', n, n,
747  $ kl, ku, nrhs, a, lda, xact, lda,
748  $ b, lda, iseed, info )
749  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
750 *
751  srnamt = 'CHETRS_ROOK'
752  CALL chetrs_rook( uplo, n, nrhs, afac, lda, iwork,
753  $ x, lda, info )
754 *
755 * Check error code from CHETRS_ROOK and handle error.
756 *
757  IF( info.NE.0 )
758  $ CALL alaerh( path, 'CHETRS_ROOK', info, 0,
759  $ uplo, n, n, -1, -1, nrhs, imat,
760  $ nfail, nerrs, nout )
761 *
762  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
763 *
764 * Compute the residual for the solution
765 *
766  CALL cpot02( uplo, n, nrhs, a, lda, x, lda, work,
767  $ lda, rwork, result( 5 ) )
768 *
769 *+ TEST 6
770 * Check solution from generated exact solution.
771 *
772  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
773  $ result( 6 ) )
774 *
775 * Print information about the tests that did not pass
776 * the threshold.
777 *
778  DO 210 k = 5, 6
779  IF( result( k ).GE.thresh ) THEN
780  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
781  $ CALL alahd( nout, path )
782  WRITE( nout, fmt = 9998 )uplo, n, nrhs,
783  $ imat, k, result( k )
784  nfail = nfail + 1
785  END IF
786  210 CONTINUE
787  nrun = nrun + 2
788 *
789 * End do for each value of NRHS in NSVAL.
790 *
791  220 CONTINUE
792 *
793 *+ TEST 7
794 * Get an estimate of RCOND = 1/CNDNUM.
795 *
796  230 CONTINUE
797  anorm = clanhe( '1', uplo, n, a, lda, rwork )
798  srnamt = 'CHECON_ROOK'
799  CALL checon_rook( uplo, n, afac, lda, iwork, anorm,
800  $ rcond, work, info )
801 *
802 * Check error code from CHECON_ROOK and handle error.
803 *
804  IF( info.NE.0 )
805  $ CALL alaerh( path, 'CHECON_ROOK', info, 0,
806  $ uplo, n, n, -1, -1, -1, imat,
807  $ nfail, nerrs, nout )
808 *
809 * Compute the test ratio to compare values of RCOND
810 *
811  result( 7 ) = sget06( rcond, rcondc )
812 *
813 * Print information about the tests that did not pass
814 * the threshold.
815 *
816  IF( result( 7 ).GE.thresh ) THEN
817  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
818  $ CALL alahd( nout, path )
819  WRITE( nout, fmt = 9997 )uplo, n, imat, 7,
820  $ result( 7 )
821  nfail = nfail + 1
822  END IF
823  nrun = nrun + 1
824  240 CONTINUE
825 *
826  250 CONTINUE
827  260 CONTINUE
828  270 CONTINUE
829 *
830 * Print a summary of the results.
831 *
832  CALL alasum( path, nout, nfail, nrun, nerrs )
833 *
834  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
835  $ i2, ', test ', i2, ', ratio =', g12.5 )
836  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
837  $ i2, ', test ', i2, ', ratio =', g12.5 )
838  9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
839  $ ', test ', i2, ', ratio =', g12.5 )
840  RETURN
841 *
842 * End of CCHKHE_ROOK
843 *
844  END