LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Classes Files Functions Variables Typedefs Macros
dorcsd2by1.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine dorcsd2by1 (JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11, X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, WORK, LWORK, IWORK, INFO)
 DORCSD2BY1

Function/Subroutine Documentation

subroutine dorcsd2by1 ( character  JOBU1,
character  JOBU2,
character  JOBV1T,
integer  M,
integer  P,
integer  Q,
double precision, dimension(ldx11,*)  X11,
integer  LDX11,
double precision, dimension(ldx21,*)  X21,
integer  LDX21,
double precision, dimension(*)  THETA,
double precision, dimension(ldu1,*)  U1,
integer  LDU1,
double precision, dimension(ldu2,*)  U2,
integer  LDU2,
double precision, dimension(ldv1t,*)  V1T,
integer  LDV1T,
double precision, dimension(*)  WORK,
integer  LWORK,
integer, dimension(*)  IWORK,
integer  INFO 
)

DORCSD2BY1

Download DORCSD2BY1 + dependencies [TGZ] [ZIP] [TXT]

Purpose:

 Purpose:
 ========

 DORCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
 orthonormal columns that has been partitioned into a 2-by-1 block
 structure:

                                [  I  0  0 ]
                                [  0  C  0 ]
          [ X11 ]   [ U1 |    ] [  0  0  0 ]
      X = [-----] = [---------] [----------] V1**T .
          [ X21 ]   [    | U2 ] [  0  0  0 ]
                                [  0  S  0 ]
                                [  0  0  I ]
 
 X11 is P-by-Q. The orthogonal matrices U1, U2, V1, and V2 are P-by-P,
 (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are
 R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in
 which R = MIN(P,M-P,Q,M-Q).
Parameters
[in]JOBU1
          JOBU1 is CHARACTER
           = 'Y':      U1 is computed;
           otherwise:  U1 is not computed.
[in]JOBU2
          JOBU2 is CHARACTER
           = 'Y':      U2 is computed;
           otherwise:  U2 is not computed.
[in]JOBV1T
          JOBV1T is CHARACTER
           = 'Y':      V1T is computed;
           otherwise:  V1T is not computed.
[in]M
          M is INTEGER
           The number of rows and columns in X.
[in]P
          P is INTEGER
           The number of rows in X11 and X12. 0 <= P <= M.
[in]Q
          Q is INTEGER
           The number of columns in X11 and X21. 0 <= Q <= M.
[in,out]X11
          X11 is DOUBLE PRECISION array, dimension (LDX11,Q)
           On entry, part of the orthogonal matrix whose CSD is
           desired.
[in]LDX11
          LDX11 is INTEGER
           The leading dimension of X11. LDX11 >= MAX(1,P).
[in,out]X21
          X21 is DOUBLE PRECISION array, dimension (LDX21,Q)
           On entry, part of the orthogonal matrix whose CSD is
           desired.
[in]LDX21
          LDX21 is INTEGER
           The leading dimension of X21. LDX21 >= MAX(1,M-P).
[out]THETA
          THETA is DOUBLE PRECISION array, dimension (R), in which R =
           MIN(P,M-P,Q,M-Q).
           C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
           S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
[out]U1
          U1 is DOUBLE PRECISION array, dimension (P)
           If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1.
[in]LDU1
          LDU1 is INTEGER
           The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
           MAX(1,P).
[out]U2
          U2 is DOUBLE PRECISION array, dimension (M-P)
           If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal
           matrix U2.
[in]LDU2
          LDU2 is INTEGER
           The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
           MAX(1,M-P).
[out]V1T
          V1T is DOUBLE PRECISION array, dimension (Q)
           If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal
           matrix V1**T.
[in]LDV1T
          LDV1T is INTEGER
           The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
           MAX(1,Q).
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
           On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
           If INFO > 0 on exit, WORK(2:R) contains the values PHI(1),
           ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
           define the matrix in intermediate bidiagonal-block form
           remaining after nonconvergence. INFO specifies the number
           of nonzero PHI's.
[in]LWORK
          LWORK is INTEGER
           The dimension of the array WORK.
      If LWORK = -1, then a workspace query is assumed; the routine
      only calculates the optimal size of the WORK array, returns
      this value as the first entry of the work array, and no error
      message related to LWORK is issued by XERBLA.
[out]IWORK
          IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
[out]INFO
          INFO is INTEGER
           = 0:  successful exit.
           < 0:  if INFO = -i, the i-th argument had an illegal value.
           > 0:  DBBCSD did not converge. See the description of WORK
                above for details.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
July 2012
References:
[1] Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009.

Definition at line 236 of file dorcsd2by1.f.

Here is the call graph for this function:

Here is the caller graph for this function: